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Abstract 

Lord (1982) and Ogasawara (2001a) derived formula for deriving the asymptotic 

standard errors for true score equating using 2PL and 3PL dichotomous items for equivalent 

and non-equivalent groups.  Recently, Wong (2015) proposes extensions to cater to 

polytomous items, using the Generalised Partial Credit Model (GPCM) and Graded Response 

Model.   In SAS NLMixed, the proposed formula works well for in estimating standard errors 

for true score equating involving equivalent and non-equivalent groups of examinees.   

The Partial Credit Model (PCM) is different from the GPCM, as it assumes a constant 

slope for the item parameters.  The method of equating is also different, with the use of a 

single shift value, compared to two equating coefficients for the GPCM.  Hence, studies in 

PCM are needed to determine if NLMixed support the use of the formulas.   This paper 

proposes the use of NLMixed to estimate true score equating standard errors for the PCM 

using formulas, for common item equating and concurrent calibration equating.  A simple 

example with step-by-step explanation will be used to illustrate use of the formulas.  Studies 

were also conducted based on Monte-Carlo simulations and results are presented in this 

paper. 
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Introduction 

Equating or linking could be conducted for scores in a number of metric, namely the 

ability scale, true score scale or observed score scale.  The true score scale is used in 

equating, due to familiarity with the scale, as it resembles the “number correct” score for 

dictomous items. True scores are used as though they are observed score, to form tables of 

equivalent scores between tests forms.  For instance, with equating, we could claim that a 

score of 35 marks in form U last year, is equivalent to a score of 32 marks in form V this 

year.   

The purpose of asymptotic standard error (SE) is to quantify the amount of error in 

the equated score, due to sampling.  This inform on the accuracy of the critical equated scores 

(e.g. pass-fail score), and could influence decisions based on these cut-scores.  APA, AERA, 

and NCME (see Standards for Educational and Psychological Testing, 1999, p.57) also 

recommend the reporting of SE in equating.   

There are generally two approaches to obtain estimates for the SE.  The first approach 

involves the use of a large number of bootstrap samples that are generated from the estimated 

item parameters.  It could be rather time consuming to perform such studies, which may 

involve performing 100-1000 equatings using the bootstrap samples, to obtain estimates of 

SE.  The second approach makes use of asymptotic standard error formulas derived using the 

delta method, to approximate the SE.  There is no need to simulate any sample, as the 

formulas make use of the estimated parameters, as well as the variance-covariance matrix 

obtained during calibration.  Formulas for IRT dictomous models were derived by Ogasawara 

(2001a) for dicotomous 2PL and 3PL models.  Wong (2015) also proposed formulas for 

polytomous models, namely the Graded Response Model (GRM) and Generalised Partial 

Credit (GPCM) IRT models.  His studies using SAS NLMixed tended to support the use of 

these formulas. 

The purpose of this paper is to propose the procedure to estimate asymptotic SE using 

NLMixed, for the Partial Credit model (Masters, 1982).  The model is different from the 

GPCM, as it assumes a constant slope across items.  In 2004, the use of NLMixed to calibrate 

IRT models, including the Rasch family of models was proposed by Wilson et al. (Wilson & 

De Boeck, 2004; Sheu, Chen & Wang, 2005; Tuerlinckx & Wang, 2004).  It generated 

studies on the use of this procedure in various contexts, as it offers an alternative to 

specialised IRT calibration softwares.  NLMixed estimates the parameters using a marginal 

maximum likelihood estimation method, which treat ability as random effects. In the 

estimation of item parameters, an ability distribution is used, and the procedure does not 

automatically lead to estimates of ability for examinees.  Estimation programs often present 

different challenges to implement solutions based on IRT models.  Hence, this paper 

contributes to studies on the use of the procedure, for PCM true score equating and estimation 

of asymptotic standard errors.   

Two popular equating designs in Rasch-related equating will be considered in this 

paper - the common-item equating and the concurrent equating.  Other equating designs (e.g. 

common-person equating) are not attempted here.  These could be areas for future research.  

In the common-item equating design, two forms (say Tests U and V) to be equated share 
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common items, and the estimated parameters of the common items are used to derive a 

scaling constant, to place Test V on the same scale as Test U (see Table 1).  Two separate 

calibrations are needed; one for data from Test U and another for the data from Test V, giving 

rise to two sets of item parameters.  In the concurrent equating design, there is only one 

estimation run that make use of the combined data from the two tests, and assigning missing 

values to those cells labelled as ‘Not Applicable’ in Table 1. 

Table 1: Common-item equating for simplified example 

  items 

Test U 

Examinee 

Group 1 

p
er

so
n
s 

Unique items 

Subtest X 

(2 items) 

Common items 

Anchor test R1 

(3 items) 

Not 

Applicable 

Test V 

Examinee 

Group 2 

Not 

Applicable 

Common items 

Anchor test R2 

(3 items) 

Unique items 

Subtest Y 

(2 items) 

 

Equating of Tests Modelled Using the Partial Credit Model (PCM) for Non Equivalent 

Group of Examinees 

The proposed formulas for the PCM model, adapted from those proposed for the 

GPCM by Wong (2015), are illustrated here using a simplified example.  Suppose two groups 

of examinees, Groups 1 and 2, take Tests U and V as shown in Table 1.  Suppose Test U has 

two unique items in subtest X and three common items in anchor test R1.  Similarly Test V 

has two unique items in subtest Y and three common items in anchor test R2.  Let’s assume 

that all the subtests involve only polytomous items with three categories of number correct 

scores (t=0,1 or 2), with a score of 0 for category 1, a score of 1 for category 2 and so on.  

This means that each item has two threshold parameters (denoted by bkgh).   If an examinee 

with ability θ attempted the gth item of the kth test, then according to Master’s (1982) PCM, 

the probability function of a getting a score of t is given as follows: 

  0

2

0 0

exp[ ( )]

( )

exp[ ( )]

t

kgh

h
kgt t

kgh

t h

b

P

b









 









 
 (1)  

Note that the value of 2 in the summation symbol corresponds to our simplified 

assumption of having only three categories for each item.  Suppose we wish to put the scale 

of Test V onto the scale for Test U.  The probability function for items in Test U is in the 

form given by Equation (1).  For items in Test V, the function takes on a slightly different 

form to cater to the “shift” value.  It is: 
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  0

2

0 0

exp[ ( )]

( )

exp[ ( )]

t

kgh

h
kgt t

kgh

t h

b B

P

b B









 

 



 



 
 (2) 

where B is the “shift” value (i.e. also known as the equating coefficient), to put the two tests 

on the same scale.         

Next, we define the true scores of tests V as: 

  
2

2

2 2

1 1 1 1

( ) ( )
R Y

n n

R gt Ygt

g t g t

tP tP  
   

    (3) 

Here nY=2  and 
2

3Rn  .  This is the familiar expression making use of the expected 

score formula, i.e. ( | )xP X x  .   The true score for Test U denoted by   is defined in a 

similar manner. To equate the two tests using the common items method, we first obtain the 

estimates of both the item parameters (i.e. ̂
%

 which is a column vector made up of the 

estimated item thresholds bkgh) and the shift value/equating coefficient (i.e. B̂ ) .  The former 

is obtained from the NLMixed calibration, whilst the equating coefficient is computed from 

the item estimates of the common items.  Let ̂
%

 and B̂  be collectively denoted by the 

vector ˆ ˆˆ( , )B  
%

, then the asymptotic variance of ̂  is obtained using the delta method as 

follows: 

 ˆˆvar( ) cov( )a a
 

 
 

 


 
% %

  (4) 

The steps to derive the terms on the RHS of (4) are given in Table 2. The formulas for 

the PCM model shown in this are adapted from those for the GPCM presented in the paper by 

Wong (2015).  Using our simplified example, the item parameters obtained from NLMixed 

and the values obtained using the formulas corresponding to an ability value of -0.55 are 

shown in Table 3.  This ability value is arbitrarily selected for illustration purpose, as it 

correspond to a true score of 4 for Test U.  In practice, a number of ability values could be 

used, corresponding to the true scores of interest in Test U (e.g. those corresponding to the 

cut-scores in Test U). 

Concurrent Equating 

To work out the SE for concurrent equating, the steps are largely the same but 

simpler.  Only the formulas related to Test V in Tables 2 or 3 are needed and there is also no 

need for partial derivatives related to B, which is set to zero.  In addition, the aCov matrix 

comprises of only one variance-covariance matrix. 
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Table 2: Steps to derive the asymptotic standard errors for the PCM 
S

te
p

 

T
es

t  Cells in Table 3 Relevant Formulas 

1.  V,

U 

Obtain the partial 

derivatives of Pkgt wrt 

ability  

[1A],[1B], 

[4A],[4B] 

2

0

( )
( ) ( 1) { ( )( 1)}

kgt

kgt kgs

s

P
P t P s


 

 

  
      



 

2.  V,

U 

Obtain the partial 

derivatives of Pkgt wrt 

the each item threshold  

[2A],[2B], 

[3A],[3B], 

[5A],[5B], 

[6A],[6B] 

2

2

( ) 1 { ( )}  if h t
( )

( ) 0 { ( )}  otherwise

kgt kgs

s hkgt

kgh

kgt kgs

s h

P P
P

b
P P

 


 





  
       

 
      





 

3.  V,

U 

Obtain the partial 

derivatives of η wrt 

abilities 

[8]=sum[1]=  

sum(1*[1A]+2*[1B]) 

[9]=sum[4]=  

sum(1*[4A]+2*[4B]) 

2

2

( , ) 1 1

( )kn
Ygt

k R Y g t

P
t



   




 
   

Similar equation for 1( , X)k R  

4.  V Obtain the partial 

derivatives of η wrt the 

each item threshold in 

test V 

[2] = 

(1*[2A]+2*[2B]), 

[3] = 

(1*[3A]+2*[3B]) 

2

1 1

( )Yn
Ygt

g tYgh Ygh

P
t



  




 


% %

; 

Similar equation for R2 

5.  U Obtain the partial 

derivatives of η wrt 

each item threshold in 

test U 

[5C]= 

-(1*[5A]+2*[5B])/[9] 

 

[6C]= 

-(1*[6A]+2*[6B])/[9] 

 

First, obtain 

1

2

1

2

( , ) 1 1

( ) /

[ ( ) / ]
k

Xgt Xgh

t

n

Xgh
kgt

k X R g t

t P

t P

 



 



  

    



 



 

%

%

 

Similar equation for R1 

[5]=[8]*[5C] 

and 

[6]=[8]*[6C] 
Xgh Xgh

  

  

  


  
% %

 

where 







 is from step 3 above.  

6.  V Obtain the partial 

derivatives of η wrt 

equating coefficient B 

 - [8] 

2

2

( , ) 1 1

( )kn
kgt

k R Y g t

P
t

B B



  




 
    

= -[8] since 
( ) ( )kgt kgtP P

B

 



 
 

 
 

where [8] is from step 3 above 
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S

te
p

 

T
es

t  Relevant Formulas 

7.   Form row vector1:  

{[5],[6],[2],[3],-[8]} which is a 21x1 

row vector since 10+10+1=21 








%

 where ˆ ˆˆ( , )B  
%

 

8.   Form row vector2. Since 1/(mp)= 

1/(2*3)=1/6=0.167, 

row vector2= 

{0.167,  0.167,  0.167, 0, 0,   

 0.167,  0.167,  0.167, 0, 0,  

-0.167, -0.167, -0.167, 0, 0,  

-0.167, -0.167, -0.167, 0, 0} 

 

B






%

 Non zero partial derivatives are: 

1 11 2

1

2R j R j

B B

b b p

 
 

 
;

 
2 21 2

1
1,..,

2R j R j

B B
j p

b b p

 
   

 
  

Note:  ‘2’ in the denominator reflects 2 

thresholds here 

9.   Extract variance-covariance matrices 

from NLmixed and form aCov, which 

is a 20x20 matrix 

ˆcov( )a 
%

 

This is a block diagonal matrix comprising of 

the two covariant matrices – The matrix from 

Test U is on the top left and the matrix from 

Test V is on the bottom right. 

10.   Form vector3 by multiplying  

TRANSPOSE (vector2) by aCov, which 

yield {1x20}x{20x20}=1x20 row 

vector 

ˆ ˆ ˆcov( ; ) cov( )
B

a B a 



 

% %
%

 

11.   Form scalar1 by multiply vector2 x 

aCov x TRANSPOSE (vector2), which yield 

a scalar, since 

{1x20}x{20x20}x{1x20}=1x1 

ˆ ˆcov( ) cov( )
B B

a B a 
 

 


 %
% %

 

12.   Form partitioned matrix1 as follows: 

aCov TRANSPOSE 

(vector 3) 

Vector3 scalar1 

This is a 21x21 matrix 

Since 

ˆ ˆˆ( , )B  
%

 

Partitioned matrix: 

ˆˆ ˆcov( ) cov( ; )ˆcov( )
ˆ ˆˆcov( ; ) cov( )

a a B
a

a B a B

 




 
  
  

% %

%

 

13.   Finally, the variance for  a particular 

theta (here theta=-0.55) is computed as 

follows: 

vector1 x matrix1 x TRANSPOSE 

(vector1). 

The square root of the variance is the 

required SE for the specified theta 

ˆˆvar( ) cov( )a a
 

 
 

 


 
% %

 



 

 

7 

Table 3:  Item parameters of simplified example and derived values using the asymptotic SE formulas for PCM (ability assumed to be -0.55) 

  
 

 
    

  
 

t=1, h=1 t=2, h=1 t=1, h=2 t=2, h=2 
  

  

ITEM TEST B theta b1 b2 1( )kgP   
2 ( )kgP   1( )kgP 







 2 ( )kgP 







 






 1

1

( )kg

kg

P

b





 2

1

( )kg

kg

P

b





 1

2

( )kg

kg

P

b





 2

2

( )kg

kg

P

b





 
  

1kgb




 

2kgb




 

    
    

[1A] [1B] [1] [2A] [2B] [3A] [3B] 
  

[2] [3] 

1 V 0.4667227 -0.55 0.5046 1.5567 0.1768 0.0135 0.1408 0.0242 0.1893 -0.1432 -0.0109 0.0024 -0.0133   -0.1650 -0.0242 

2 V 0.4667227 -0.55 -1.5660 0.4374 0.5522 0.1290 0.1048 0.1535 0.4118 -0.1760 -0.0411 0.0712 -0.1124   -0.2583 -0.1535 

3 V 0.4667227 -0.55 -2.6520 -1.3430 0.3875 0.5370 -0.1788 0.2892 0.3996 -0.0293 -0.0406 0.2081 -0.2486   -0.1104 -0.2892 

4 V 0.4667227 -0.55 -0.6364 0.5322 0.3738 0.0794 0.1747 0.1165 0.4078 -0.2044 -0.0434 0.0297 -0.0731   -0.2912 -0.1165 

5 V 0.4667227 -0.55 -1.0679 1.0782 0.4823 0.0594 0.1924 0.0830 0.3585 -0.2211 -0.0272 0.0286 -0.0558   -0.2755 -0.0830 

  
       

Sum= 1.7669[8] 
        

                   

           t=1, h=1 t=2, h=1 t=1, h=2 t=2, h=2     

ITEM TEST B theta b1 b2 1( )kgP   
2 ( )kgP   1( )kgP 







 2 ( )kgP 







 






 1

1

( )kg

kg

P

b





 2

1

( )kg

kg

P

b





 1

2

( )kg

kg

P

b





 2

2

( )kg

kg

P

b





 

1kgb




  

2kgb




 

1kgb




 

2kgb




 

        [4A] [4B] [4] [5A] [5B] [6A] [6B] [5C] [6C] [5] [6] 

1 U 0 -0.55 1.0309 1.8461 0.1681 0.0153 0.1347 0.0276 0.1898 -0.1372 -0.0125 0.0026 -0.0151 0.0851 0.0145 0.1503 0.0255 

2 U 0 -0.55 -1.0416 0.9654 0.5460 0.1200 0.1169 0.1456 0.4082 -0.1824 -0.0401 0.0655 -0.1056 0.1377 0.0764 0.2433 0.1350 

3 U 0 -0.55 -1.9685 -1.0942 0.3372 0.5811 -0.1684 0.2909 0.4133 -0.0275 -0.0474 0.1960 -0.2434 0.0642 0.1526 0.1134 0.2695 

4 U 0 -0.55 -0.5931 0.5532 0.4367 0.1449 0.1194 0.1845 0.4885 -0.1827 -0.0606 0.0633 -0.1239 0.1594 0.0968 0.2817 0.1710 

5 U 0 -0.55 -1.0376 0.9774 0.5461 0.1185 0.1184 0.1443 0.4069 -0.1831 -0.0398 0.0647 -0.1045 0.1378 0.0757 0.2434 0.1337 

         Sum= 1.907[9]         
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 Studies Using Simulated Samples 

Method 

Monte-Carlo simulations were conducted to determine if NLMixed could support the 

use of the formulas to obtain asymptotic SE (denoted by ASE) for the PCM.  300 pairs of 

datasets to represent Tests U and V were simulated from random item parameters based on 

the PCM, and SE of equated results (denoted by SIM) was compared with those suggested by 

ASE.  A total of 6 studies were carried out, four involving three-category items and two 

involving 4-category items, using common-item or concurrent equating method.  The steps to 

carry out the first study (PCM & Common-item Equating 1) involving 26 three-category 

items and common-item equating are: 

(M1) Obtain population threshold parameters for 26 items drawn from the N(0,1) and 

N(1,1) distributions, and reorder the two thresholds if they are reversed.  Form two 

artificial Test U and Test V, each with 16 items such that the first 6 items represents 

the common item. 

(M2) Simulate 300 Test U datasets, each with simulated responses of 1000 examinees based 

on the PCM, assuming that the ability is drawn from the N(0,1) distribution. 

Similarly, simulate 300 Test V datasets, but assuming that the ability is drawn from 

the N(0.5,1) distribution where  the 0.5 is intended to represent the shift value. 

(M3) Calibrate the datasets using SAS NLMixed, and output the item parameters and 

variance-covariance matrices from the calibrations.  A sample SAS program for 

estimation is given in Annex A. 

(M4) For each pair of tests, work out the shift value, and perform common-item equating 

across selected abilities corresponding to integer values of Test U.  The SDs of the 

equated scores over the 300 equatings are the SEs (i.e. SIM). 

(M5) To obtain the ASE, use the estimated item parameters and variance-covariance 

matrices, and the steps in Tables 2-3 to obtain the ASE for the selected abilities.  The 

first 10 pairs of datasets were used to plot 10 ASE curves.    

(M6) Plot the 10 ASEs against the SIM.  If the ASEs are close to the SIM, then the use of 

the ASE formulas for PCM is tenable in NLMixed. 

The PCM & Common-item Equating 2 is similar to the first study, with population 

thresholds drawn from N(-0.5,1) and N(0.5,1) distributions in step (M1).  PCM & Common-

item Equating 3 involves 26 four-category items, with population threshold parameters 

simulated from the N(-1,0.5), N(0,0.5) and N(1,0.5) distributions.  The concurrent equating 

study PCM & Concurrent Equating 1 makes use of the same simulated datasets as PCM & 

Common-item Equating 1 study and so on. 
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Figures 1a-b:  Studies using PCM and Common Item Equating involving items with three 

categories.  Asymptotic Standard Errors derived from the first 10 sets of samples (ASE1-

ASE10), compared with standard error derived from 300 bootstrap samples (SIM). 
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Figures 2a-b:  Studies using PCM and Concurrent Equating involving items with three 

categories.  Asymptotic Standard Errors derived from the first 10 sets of samples (ASE1-

ASE10), compared with standard error derived from 300 bootstrap samples (SIM).
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Figure 3a:  Studies using PCM and Common Item Equating involving items with four 

categories.  Asymptotic Standard Errors derived from the first 10 sets of samples (ASE1-

ASE10), compared with standard error derived from 300 bootstrap samples (SIM). 
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Figure 4a:  Studies using PCM and Concurrent Equating involving items with four categories.  

Asymptotic Standard Errors derived from the first 10 sets of samples (ASE1-ASE10), 

compared with standard error derived from 300 bootstrap samples (SIM). 
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Results 

Figures 1a-b and 3a show the results for the PCM & Common Item Equating 1, 2 and 

3 studies respectively.  The means of the equating coefficient B were 0.496, 0.509 and 0.492 

respectively, close to the expected value of 0.5.  The 10 ASEs and SIM curves were close, 

lending support to the use of the formulas in NLMixed.  This is also the case for the 

concurrent equating studies (see Figures 2a-b and 4a for the PCM & Concurrent Equating 1, 

2 and 3 studies) 

Discussion 

The proposed formula to compute the asymptotic standard errors seems to work well 

in NLMixed, for the PCM.  Results are generally comparable between the empirically 

computed (SIM) and analytically derived (ASE) standard errors.  This is true for studies 

using the different equating methods (i.e. concurrent or common-item), different number of 

categories and different population item parameters. It demonstrated the possibility of using 

outputs from commercial software like SAS NLMixed to compute asymptotic standard error 

for equating, which may be more accessible for some researchers, as the variance-covariance 

matrix is produced during the calibration.  The use of NLMixed for the Rasch family may 

require additional checks to determine if the scales are invariant, as the slope is fixed at a 

constant.  This could be done by the usual quality control plots suggested by Wright & Stone 

(1979), by plotting the common item parameters in Test U and Test V, after putting them on 

the same scale.  If these points fall on the identity line, then the two scales can be considered 

to be on the same scale. To illustrate, Figure 5 shows one such plot from the PCM  & 

Common-Item Equating 1 study. 
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1

2

3
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-4 -3 -2 -1 0 1 2 3 4

'

group DATA POINTS IDENTITY LINE

 

Figure 5  Quality control plot to check for the invariance of the Rasch scales after equating 

There is scope for more studies related to the Rasch family of models.  For instance, 

could NLMixed support equating and the estimation of SE using common-person equating? 



 

 

13 

How could the formulas be adapted for use with the Rating Scale model?  The studies 

using NLMixed in this paper also surface some possible research questions.  To cater to the 

PCM in NLMixed, in addition to the item parameters, the SD of the random effect ability 

distribution was also estimated.  Additional studies on the possible effects of this variation 

during estimation could be conducted.  The proposed formulas could also be studied using 

different commercial softwares or estimation methods, to determine if these observations are 

replicable.    
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Appendix A 

Using SAS NLMixed for the Partial Credit Model 

 
* Call in simulated dataset 1 
DATA ff1; 
  SET IN.simdata1; 
  CASE=_N_; 
  KEEP CASE Q1-Q16; 
RUN; 
 
* Import categorical item data; 
DATA F1; SET ff1; 
ARRAY aQ(16) Q1-Q16; 
DO i=1 TO 16; 
item=i; Q=aQ(i); OUTPUT; 
END; 
RUN; 
 
* Create dummy variables; 
DATA F1; SET F1; 
ARRAY dummy (16) i1-i16; 
DO d=1 TO 16; 
IF item=d THEN dummy(d)=1; ELSE dummy(d)=0; 
END; 
DROP i d Q1-Q16; 
RUN; 
 
PROC NLMIXED DATA=F1 METHOD=GAUSS TECHNIQUE=QUANEW QPOINTS=20 COV NOAD; 
 
* All model parameters must be listed here with start values; 
PARMS d101-d116=-1 d201-d216=0 sd=1; 
 
d1 = d101*i1 + d102*i2 + d103*i3 + d104*i4 + d105*i5 + d106*i6 + d107*i7 + d108*i8 + d109*i9 + 
d110*i10 + d111*i11 + d112*i12 + d113*i13 + d114*i14 + d115*i15 + d116*i16; 
 
d2 = d201*i1 + d202*i2 + d203*i3 + d204*i4 + d205*i5 + d206*i6 + d207*i7 + d208*i8 + d209*i9 + 
d210*i10 + d211*i11 + d212*i12 + d213*i13 + d214*i14 + d215*i15 + d216*i16; 
 
eta1 = exp(theta-d1); 
eta2 = exp((theta-d1)+(theta-d2)); 
* Probabilities for each category estimated; 
IF Q=0 THEN p = 1 / (1 + eta1 + eta2 ); 
ELSE IF Q=1 THEN p = eta1 / (1 + eta1 + eta2); 
ELSE IF Q=2 THEN p = eta2 / (1 + eta1 + eta2); 
if (p>1E-8) then ll=log(p); 
else ll=-1E100; 
MODEL Q ~ general(ll); 
RANDOM theta ~ normal(0,sd**2) SUBJECT = case ; 
* All item parameter estimates and the variance-covariance matrix saved to named datasets; 
ODS OUTPUT ParameterEstimates=OUT.item_parameter; 
ODS OUTPUT CovMatParmEst=OUT.variance_cov; 
RUN; 
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